Semi-Monthly Daily LFG Well Temperature Update

King, Brandon < BKing@scsengineers.com>

Fri 1/20/2023 10:06 AM

To: hall.kristen@epa.gov <hall.kristen@epa.gov>;Blalock, Susan (DEQ)

- <Susan.Blalock@deq.virginia.gov>;willard.erinm@epa.gov <willard.erinm@epa.gov>;Hurst, Jeffrey (DEQ)
- <Jeffrey.Hurst@deq.virginia.gov>;Bowers, Stacy (DEQ) <Stacy.Bowers@deq.virginia.gov>;Randall Eads
- <citymanager@bristolva.org>;David Cochran <dcochran@bristolva.org>;joey.lamie@bristolva.org
- < joey. lamie @bristolva.org >; jon. hayes @bristolva.org < jon. hayes @bristolva.org >; jacob. chandler @
- <jacob.chandler@bristolva.org>;'mmartin@bristolva.org' (mmartin@bristolva.org) <mmartin@bristolva.org>
- Cc: Dick, Bob <BDick@scsengineers.com>;Warren, Charles <CWarren@scsengineers.com>;Nachman, Lucas
- <LNachman@scsengineers.com>;Mahon, Ryan <RMahon@scsengineers.com>;Lock, Tom
- <TLock@scsengineers.com>

Ms. Hall and Ms. Blalock,

In accordance with EPA's letter, "Approval of Higher Operating Temperature Values of Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Facility" from August 2021, I am providing the January 19th, 2023 status update on the existing wells, expansion of the gas collection system, and continuing operating and monitoring results, covering the period from January 1-15, 2023.

Thank you,

D. Brandon King SCS Engineers Project Manager 15521 Midlothian Turnpike, Suite 305 Midlothian, VA 23113 Main 804-378-7440 Direct 804-486-1902 Cell 804-840-7846

Environmental Consulting & Contracting

SCS ENGINEERS

January 19, 2023 File No. 02218208.04

MEMORANDUM

TO: Kristin Hall, EPA Region III Tracy Blalock, VDEQ-SWRO

FROM: D. Brandon King, SCS Engineers Robert E. Dick, SCS Engineers

SUBJECT: Semi-Monthly Status Update – January 1st through January 15th, 2023 Bristol Integrated Waste Management Facility, Bristol, Virginia

In accordance with the Environmental Protection Agency (EPA) Region III letter, *Approval of Higher Operating Temperature Values for Landfill Gas Wells and Submission of Gas Treatment Alternatives at the Bristol Virginia Integrated Solid Waste Management Facility*, dated 8/23/21, SCS is submitting this semi-monthly status update to satisfy the condition of compliance provision #2. This compliance provision report includes daily temperature readings of the existing and new wells installed. In addition, this report includes a summary of work accomplished during this reporting period of 12/16/22 through 12/31/22, pursuant of compliance provision #2.

DAILY TEMPERATURE READINGS

Twenty-five (25) individual landfill gas (LFG) wellheads in the Permit #588 Landfill have automated temperature sensors installed. Beginning on 12/1/22, VDEQ and USEPA are receiving Daily Landfill Gas Well Temperature Averages Reports presenting the data measured by the automated temperature sensors.

The LFG wellhead automated temperature sensor system is still undergoing commissioning and SCS staff is still conducting verification testing and making minor field modifications to this system. Some values reported may differ from recordings made by other field instrumentation. SCS may elect to report values gathered from other data sources (GEM, field thermometer) for regulatory purposes until commissioning is complete.

The City recorded daily temperature readings during the first half of January, which are displayed on the attached table. Existing well GW-37 had recorded readings greater than 145F throughout the majority of this reporting period. However, well GW-46 recorded temperatures below 145F throughout the reporting period according to the City's data. New wells GW-57 and GW-64 recorded temperatures greater than 145F throughout the majority of this reporting period, while GW-52, GW-53, and GW-67 recorded temperatures greater than 145F intermittently during the first half of January according to the City's data.

LFG ANALYTICAL DATA REVIEW

The City and SCS are still awaiting the EPA's evaluation of the Higher Operating Value for Temperature Request letter submitted to EPA on 3/8/22. According to LFG monthly wellfield data recorded during January 2023, LFG monthly wellfield retest data, exceedance temperatures continue in HOV requested well GW-37 according to the January initial wellfield monitoring data. In

addition, temperatures greater than 145F were recorded in wells GW-57 and GW-64 during January wellfield monitoring by SCS. However, LFG well GW-64 recorded temperatures below 145F during retest activities on 1/12/23. LFG well GW-67 recorded temperatures below 145F during January monthly wellfield monitoring activities by SCS. SCS recorded temperatures below 145F at the remaining wells during the January initial wellfield monitoring event.

SCS collected a CO sample via 1.5L Summa Canister at well GW-37 on 12/30/22 and received the laboratory analytical data on 1/5/23. GW-37 recorded a CO concentration of 180 ppm. The laboratory analytical data is included for reference.

NON-ROUTINE O&M

The O&M contractor completed installation of the 10'x10' well bore skirts with approximately one foot of cover soil that overlaps the edges of the skirt in late December. The contractor compacted the soil with the excavator bucket and the neck of the skirt was secured to the well casing using a banding clamp. SCS conducted two consecutive weekly surface emissions monitoring (SEM) events during this reporting period where no locations greater than 500 ppm were recorded at either the serpentine route or at any pipe penetration.

SCS Field Services (FS) Construction has commenced construction of the Sidewall Odor Mitigation System (SOMS) effectively as of the week of 12/19/22. SCS-FS is working with several subcontractors for various facets such as liner system and concrete work. The initial phase of construction on the SOMS is on the western sidewall section deemed the pilot-study Phase I.

SCS is continuing work monitoring, balancing, and tuning the south end leachate cleanouts.

EVALUATION OF LFG SYSTEM

SCS is continuing weekly surface emissions monitoring per the Plan of Action Report dated 7/6/22. The City has placed intermediate cover throughout the Permit No. 588 Landfill based on soil boring testing results, including soil cover over the LFG, airline, and forcemain piping. Subsequent to the installation of the well bore skirts at 19 select LFG wells exhibiting methane exceedances at pipe penetrations during weekly SEM events, SCS monitoring data has shown significant improvement at all locations now exhibiting methane concentrations below 500 ppm.

SCS Engineers will continue to balance and tune the LFG wellheads on the south leachate cleanouts in January, as well as other LFG System wells. SCS has already noticed improvements in LFG quality at the blower/flare station as a result of the south cleanout improvements. Furthermore, the City and SCS anticipate commencement of landfill gas (LFG) system expansion construction in the near future.

Please contact SCS or City personnel if you have any questions or require additional information.

cc: Randall Eads, City of Bristol Jon Hayes, City of Bristol Jeff Hurst, VDEQ-SWRO Tom Lock, SCS Field Services

David Cochran, City of Bristol Erin Willard, EPA Region III Stacy Bowers, VDEQ-SWRO Robert E. Dick, P.E., SCS Engineers

	ے			Month	January	January	January	January	January	January	January	January	January	January	January	January	January	January	January
	Well Depth	Drill		Day	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
te	🖺	த	ase	Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Note	×	Dat	Phase	Well Number															
1	102	10/16/2016	Old Well	35		NM	74		66	59	50	52	50	52	60	66		63	60
2	70	9/6/2017	Old Well	39		NM	78		64	51	45	47	44	44	54	61		58	55
3	100	9/7/2017	Old Well	40		NM	128		122	113	120	118	118	120	124	127		120	125
4	110	10/4/2016	Old Well	46		NM	140		138	144	143	143	112	111	143	143		142	140
5	120	10/4/2016	Old Well	47		NM	110		108	98	99	95	95	90	95	99		94	98
6	120		Old Well	29]	NM	102		90	88	81	82	96	107	107	107		107	106
7	100	8/23/2017	Old Well	30R		NM	130		131	128	127	129	120	124	127	128		126	124
8	120	8/30/2017	Old Well	31R		NM	140		138	132	134	137	132	134	135	136		135	136
9	70	7/29/2016	Old Well	32		NM	78		76	66	61	65	69	71	74	96		69	74
10	100	7/28/2016	Old Well	33		NM	130		130	128	128	127	127	127	127	127		127	127
11	100	7/30/2016	Old Well	34		NM	140		140	102	128	123	119	120	120	138		135	120
12	100	8/1/2016	Old Well	36]	NM	76		64	54	44	48	53	55	60	63		63	60
13	100	8/24/2017	Old Well	37	1	NM	152		142	150	150	150	150	151	150	150		150	150
14	50	8/25/2017	Old Well	38	1	NM	110		104	104	100	100	87	88	102	102		100	102
15	75	9/8/2017	Old Well	41	1	NM	122		122	112	104	99	96	100	101	101	1	98	101
16	57	9/8/2017	Old Well	42	1	NM	120		118	110	110	108	109	117	114	113	1	112	113
17	110	10/7/2016	Old Well	48	- Ind	NM	80	pu	62	57	36	41	41	55	58	65	Landfill.	58	63
					3 La			S Ea									8 Fa		
1	120	10/1/2021	New Well	32R	288	NM	130	288	122	127	127	126	127	128	128	128	288	128	120
2	110	10/1/2021	New Well	49	äi	NM	136	i i i	140	136	135	135	135	135	135	135	Permit 588	135	135
3	96	10/1/2021	New Well	50	Per	NM	136	Per	122	121	124	124	119	120	123	127	Per	124	123
					he			e l									the		
					in t			ii t									in t		i
4	114	10/1/2021	New Well	51	S S	NM	132	<u>s</u>	128	116	116	118	105	102	121	127	S S	121	126
5	109	10/1/2021	New Well	52	<u>×</u>	NM	148	<u>×</u>	142	142	128	129	126	128	133	130	<u> </u>	130	133
6	91	10/1/2021	New Well	53	ica	NM	146	ica	144	110	138	139	137	135	155	152	ica	152	150
7	91	10/1/2021	New Well	54	ert	NM	140	ert	136	134	128	139	137	137	133	124	vertical wells in	130	127
8	104	10/1/2021	New Well	55	ا بِي	Test	port unreacha	ု့်	port unreacha	97	98	99	93	94	98	98	LFG	97	98
					*Unable to record temperature readings at LFG vertical wells in the Permit 588 Landfill			Unable to record temperature readings at LFG vertical wells in the Permit 588 Landfill									at LF		
9	109	10/1/2021	New Well	56	gs a	NM	138	gs _a	131	110	133	131	131	129	132	134	gs a	132	134
10	103	10/1/2021	New Well	57	di.	NM	152	ding	150	150	146	150	147	140	173	177	readings	170	176
11	92	10/1/2021	New Well	58	rea	NM	120	rea	122	119	127	120	120	122	122	122	rea	122	121
12	72	10/1/2021	New Well	59	<u>e</u>	NM	118	<u> </u>	42	116	111	112	111	112	118	120	<u>e</u>	118	115
13	120	10/1/2021	New Well	60] atr		Blowing Foam	atr	136	126	123	119	105	106	110	113	_atr	111	112
14	105	10/1/2021	New Well	61] per	NM	124	per	130	127	127	129	123	115	130	128	temperature	127	126
15	120	10/1/2021	New Well	62] <u>H</u>	NM	72	E E	58	44	42	41	42	54	63	62] Ę	62	63
16	117	10/1/2021	New Well	63] <u>5</u> [NM	137	<u> </u>	130	129	122	121	122	125	126	124	<u> 5</u>	125	126
17	120	10/1/2021	New Well	64] မ္မ	NM	150	8	148	145	144	145	144	145	145	145	record 1	145	149
18	100	10/1/2021	New Well	65]	NM	137	ا ق	134	134	134	135	134	134	135	134	\$ \$	134	133
19	102	10/1/2021	New Well	66	e t	Test	port unreacha	le t	port unreacha	129	port unreach	ort unreac	ort unreacl	ort unreach	133	131		131	131
20	100	10/1/2021	New Well	67	nab	NM	148	nab	138	122	128	111	127	128	120	130	*Unable	128	127
21	75	10/1/2021	New Well	68]	NM	130]	130	128	128	129	128	125	127	127]	127	125
40					*Note: the	re was a lo	w level isolate	d area in the Pe	ermit #588 Lar	ndfill where	e emissions	hovered o	ver the land	dfill surface	on 1/1/23, 1/4	/23, and 1/1	3/23. There	efore daily	

^{*}Note: there was a low level isolated area in the Permit #588 Landfill where emissions hovered over the landfill surface on 1/1/23, 1/4/23, and 1/13/23. Therefore daily temperatures were not recorded on those days by City of Bristol personnel for health and safety reasons.

Certificate of Analysis

Final Report

Laboratory Order ID 23A0017

Client Name: SCS Field Services - Harrisburg, PA Date Received: January 3, 2023 11:55

4330 Lewis Road, Suite 1

Date Issued: January 5, 2023 14:06

Harrisburg, PA 17111

Project Number: 07220028.00

Submitted To: Tom Lock

100001415

Purchase Order:

07-SO04485

Client Site I.D.: Bristol

Enclosed are the results of analyses for samples received by the laboratory on 01/03/2023 11:55. If you have any questions concerning this report, please feel free to contact the laboratory.

Sincerely,

Ted Sovars

Technical Director

End Notes:

The test results listed in this report relate only to the samples submitted to the laboratory and as received by the Laboratory.

Unless otherwise noted, the test results for solid materials are calculated on a wet weight basis. dissolved oxygen, temperature, residual chlorine and sulfite that are performed in the laboratory do not meet NELAC requirements due to extremely short holding times. These analyses should be performed in the field. The results of field analyses performed by the Sampler included in the Certificate of Analysis are done so at the client's request and are not included in the laboratory's fields of certification nor have they been audited for adherence to a reference method or procedure.

The signature on the final report certifies that these results conform to all applicable NELAC standards unless otherwise specified. For a complete list of the Laboratory's NELAC certified parameters please contact customer service.

This report shall not be reproduced except in full without the expressed and written approval of an authorized representative of Enthalpy Analytical, Inc.

Certificate of Analysis

Final Report

Laboratory Order ID 23A0017

Client Name: SCS Field Services - Harrisburg, PA

Date Received: January 3, 2023 11:55

4330 Lewis Road, Suite 1

Date Issued: January 5, 2023 14:06

Harrisburg, PA 17111

Project Number: 07220028.00

Tom Lock

Purchase Order: 07-SO04485

Client Site I.D.: Bristol

Submitted To:

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
37	23A0017-01	Air	12/30/2022 11:50	01/03/2023 11:55

Certificate of Analysis

Final Report

Laboratory Order ID 23A0017

Client Name: SCS Field Services - Harrisburg, PA

4330 Lewis Road, Suite 1

Date Received: Date Issued:

January 3, 2023 11:55

January 5, 2023 14:06

Harrisburg, PA 17111

180

Submitted To: Tom Lock **Project Number:**

07220028.00

Client Site I.D.: **Bristol** Purchase Order:

07-SO04485

ANALYTICAL RESULTS

Project Location:

Field Sample #: 37

Sample ID: 23A0017-01 Sample Matrix: Air

Sampled: 12/30/2022 11:50

Analyte Carbon Monoxide, as received Sample Description/Location: Sub Description/Location:

Canister ID: 063-00021::12408

90.0

Canister Size: 1.4L

Initial Vacuum(in Hg):

Final Vacuum(in Hg):

Receipt Vacuum(in Hg): Flow Controller Type: Passive

1

1/4/23 15:20

MER

Flow Controller ID:

9

Sample Type: LV Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis

90.0

ALT-145 ppmv Date/Time Result MDL LOQ Flag/Qual Dilution Analyzed Analyst

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis EPA 3C Vol% Date/Time MDL LOQ PF Analyzed Analyst Analyte Result Flag/Qual Dilution 0.45 Methane, as received 13.6 0.45 9 1 1/4/23 15:20 MER 27.5 9 Carbon dioxide, as received 0.45 0.45 1 1/4/23 15:20 MER 9 Oxygen (O2), as received 5.87 0.45 0.45 1 1/4/23 15:20 MER 0.18 Hydrogen (H2), as received 2.51 0.18 9 1 1/4/23 15:20 MER Nitrogen (N2), as received 42.5 9.00 9.00 9 1 1/4/23 15:20 MER

Certificate of Analysis

Final Report

Laboratory Order ID 23A0017

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 3, 2023 11:55

4330 Lewis Road, Suite 1

Date Issued: January 5, 2023 14:06

Harrisburg, PA 17111

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07220028.00

Purchase Order:

07-SO04485

- Analytical Summary

Bristol

Sample ID	Preparation Factors Initial / Final	Method	Batch ID	Sequence ID	Calibration ID	
Volatile Organic Compo	unds by GC/TCD - Unadjusted, as re	ceived basis Preparation Metho		No Prep VOC GC Air		
23A0017-01	1.00 mL / 1.00 mL	ALT-145	BGA0076	SGA0057	AG00026	
23A0017-01	1.00 mL / 1.00 mL	EPA 3C	BGA0076	SGA0057	AG00026	

Certificate of Analysis

Final Report

Laboratory Order ID 23A0017

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 3, 2023 11:55

4330 Lewis Road, Suite 1

Date Issued:

January 5, 2023 14:06

Harrisburg, PA 17111

Bristol

Submitted To: Tom Lock

Client Site I.D.:

Project Number:

07220028.00

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	R	eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
Batch BGA0076 - No Prep VO	C GC Air									
Blank (BGA0076-BLK1)					Prep	ared & A	Analyzed	: 01/04/20	023	
Methane	<	0.05	Vol%							
Carbon dioxide	<	0.05	Vol%							
Oxygen (O2)	<	0.05	Vol%							
Hydrogen (H2)	<	0.02	Vol%							
Nitrogen (N2)	<	1.00	Vol%							
Carbon Monoxide	<	10.0	ppmv							
LCS (BGA0076-BS1)					Prep	ared & /	Analyzed	: 01/04/20	023	
Methane	4650	500	ppmv	5000		93.0	0-200			
Methane	4650	0.05	ppmv	5000		93.0	70-130			
Carbon dioxide	4120	500	ppmv	5000		82.4	0-200			
Carbon dioxide	4120	0.05	ppmv	5000		82.4	70-130			
Oxygen (O2)	5410	500	ppmv	5000		108	0-200			
Oxygen (O2)	5410	0.05	ppmv	5000		108	70-130			
Nitrogen (N2)	5570	1	ppmv	5000		111	70-130			
Hydrogen (H2)	5950	200	ppmv	5100		117	0-200			
Hydrogen (H2)	5950	0.02	ppmv	5100		117	70-130			
Nitrogen (N2)	5570	2000	ppmv	5000		111	0-200			
Carbon Monoxide	4890	10	ppmv	5000		97.9	0-200			
Carbon Monoxide	4890	0.001	ppmv	5000		97.9	70-130			
Duplicate (BGA0076-DUP1)		Sou	ırce: 23A	0017-01	Prep	ared & /	Analyzed	: 01/04/20	023	
Methane	137000	4500	ppmv		13600	00		0.606	25	
Methane	13.7	0.45	Vol%		13.6	;		0.606	5	
Carbon dioxide	278000	4500	ppmv		27500	00		1.02	25	
Carbon dioxide	27.8	0.45	Vol%		27.5	;		1.02	5	
Oxygen (O2)	5.90	0.45	Vol%		5.87			0.422	5	
Oxygen (O2)	59000	4500	ppmv		5870	0		0.422	25	
Nitrogen (N2)	42.7	9.00	Vol%		42.5	;		0.610	5	
Hydrogen (H2)	25300	1800	ppmv		2510	0		0.583	25	
Nitrogen (N2)	427000	18000	ppmv		42500	00		0.610	25	
Hydrogen (H2)	2.53	0.18	Vol%		2.51			0.583	5	

Certificate of Analysis

Final Report

Laboratory Order ID 23A0017

Client Name: SCS Field Services - Harrisburg, PA

Date Received:

January 3, 2023 11:55

4330 Lewis Road, Suite 1

Date Issued: January 5, 2023 14:06

Harrisburg, PA 17111

Submitted To: Tom Lock

Project Number:

07220028.00

Client Site I.D.: Bristol

Purchase Order:

07-SO04485

Volatile Organic Compounds by GC/TCD - Unadjusted, as received basis - Quality Control

Enthalpy Analytical

	Reporting			Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qual

Batch BGA0076 - No Prep VOC GC Air

Duplicate (BGA0076-DUP1)		Sou	ırce: 23A0017-01	Prepared &	Analyzed: 01/04/202	23	
Carbon Monoxide	184	90.0	ppmv	180	2.28	25	
Carbon Monoxide	0.02	0.009	Vol%	0.02	2.28	5	

Certified Analytes included in this Report

Analyte	Certifications	Analyte	Certifications	
EPA 3C in Air				
Methane	VELAP			
Oxygen (O2)	VELAP			
Nitrogen (N2)	VELAP			

Code	Description	Laboratory ID	Expires
MdDOE	Maryland DE Drinking Water	341	12/31/2023
NC	North Carolina DENR	495	07/31/2023
NCDEQ	North Carolina DEQ	495	07/31/2023
NCDOH	North Carolina Department of Health	51714	07/31/2023
NYDOH	New York DOH Drinking Water	12096	04/01/2023
PADEP	NELAP-Pennsylvania Certificate #008	68-03503	10/31/2023
VELAP	NELAP-Virginia Certificate #12157	460021	06/14/2023
WVDEP	West Virginia DEP	350	11/30/2023

Certificate of Analysis

Final Report

Laboratory Order ID 23A0017

Client Name: SCS Field Services - Harrisburg, PA

Date Received: January 3, 2023 11:55

Date Issued:

4330 Lewis Road, Suite 1

January 5, 2023 14:06

Harrisburg, PA 17111

Submitted To: Tom Lock **Project Number:**

07220028.00

Bristol

Purchase Order:

07-SO04485

Qualifiers and Definitions

RPD Relative Percent Difference

Qualifers Qual

TIC

Client Site I.D.:

-RE Denotes sample was re-analyzed

ΡF Preparation Factor MDL Method Detection Limit LOQ Limit of Quantitation parts per billion by volume ppbv

Tentatively Identified Compounds are compounds that are identified by comparing the analyte mass spectral pattern with the

NIST spectral library. A TIC spectral match is reported when the pattern is at least 75% consistent with the published pattern.

Compound concentrations are estimated and are calculated using an internal standard response factor of 1.

All EPA method 3C results are reported as normalized values when the sum total of all evaluated constituents is outside ± 10% of the absolute.

Page 7 of 9

July # 07220	028.00
--------------	--------

400			\	The state of the s	Jub # 072	70028.00	
Sample	Flow Control C	al flow	Canister ID	Size	Clean batch #	Lab outgoing	Lets recteding
37	063-00491	5,005	12408	1.4	21/122-03	21.2	can Vac
	Hert Date 12/40/22	Start time		Leady	Stop Date 12/30/22	Stop time	final can Vae
37	12/40/22			148.2		II TO AID	9
							End temp
	Analy	Alf Hyd	rogan X	\ B	CS Field Services		
Relinguished! Ryan Se 12/30/2022	edete	EPF	7 3C X	R	ecd: 01/03/2023 Du	e: 01/10/2023 v130325002	
12/30/2022	1155	- - lact (504	was ruing	ed.	no	1 e 20	0.9

using this cause my last copy was ruined.

note 20.9

Page 8 of 9